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A Note on the Frequency Polygon Based
on the Weighted Sums of Binned Data

WEN-SHUENN DENG,1 JYH-SHYANG WU,2 LI-CHING
CHEN,1 AND SHUN-JIE KE2

1Department of Statistics, Tamkang University, New Taipei City, Taiwan
2Department of Mathematics, Tamkang University, New Taipei City, Taiwan

We revisit the generalized midpoint frequency polygons of Scott (1985), and the edge
frequency polygons of Jones et al. (1998) and Dong and Zheng (2001). Their estimators
are linear interpolants of the appropriate values above the bin centers or edges, those
values being weighted averages of the heights of r, r ∈ N , neighboring histogram bins.
We propose a simple kernel evaluation method to generate weights for binned values.
The proposed kernel method can provide near-optimal weights in the sense of minimizing
asymptotic mean integrated square error. In addition, we prove that the discrete uniform
weights minimize the variance of the generalized frequency polygon under some mild
conditions. Analogous results are obtained for the generalized frequency polygon based
on linearly prebinned data. Finally, we use two examples and a simulation study to
compare the generalized midpoint and edge frequency polygons.

Keywords Edge frequency polygon; Kernel-based weights; Midpoint frequency poly-
gon; Minimum variance weights; Mixture weights; Uniform weights.

Mathematics Subject Classification Primary 62G07; Secondary 62G20.

1. Introduction

Given a univariate random sample of size n from an unknown continuous distribution,
consider the problem of estimating the distribution’s density function f via variants of
histogram (binned) values. The frequency polygon, e.g., Scott (1985), is a simple density
estimator based on histogram, with some form of linear interpolation. Although researchers
have proposed many different density estimators, frequency polygon remains a widely
used density estimator, no doubt thanks to the computational simplicity of its constituent
histogram values and the statistical efficiency comparable with nonnegative kernel density
estimators; see Scott (1985a, 1992) for excellent reviews of such density estimator. See
also Jones (1989) and Lin et al. (2006) for linearly interpolated density based on kernel
density estimates. When triangular kernel function is employed to obtain kernel estimates,
their estimators can be viewed as linear interpolants of linearly prebinned data.
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A simple approach to improve the efficiency of the frequency polygon without spoiling
its simplicity is to interpolate the weighted sums of a collection of histogram values
above bin centers or edges. Let r be the number of histogram values used to obtain such
weighted sums, then the uses of odd and even values of r result in midpoint and edge
frequency polygons, respectively. In this article, we consider density estimator defined as
the linear interpolant of such weighted sums of binned values and investigate the choices
of weights. Call the above two estimators simply frequency polygon if there is no danger
of confusion in what follows. As we will see in the next section, when r is even, the studied
frequency polygon corresponds to the edge frequency polygon (EFP) proposed by Jones
et al. (1998) and its generalized version known as generalized edge frequency polygon
(GEFP) considered by Dong and Zheng (2001). For odd values of r, it corresponds to the
frequency polygon of averaged shifted histograms (FP-ASH) of Scott (1992, 2010).

Given a bin width, it is the choice of weights that exclusively determine the asymptotic
mean integrated square error (AMISE) of the frequency polygon. The main purpose of
this article is to propose a simple kernel evaluation method to generate weights for binned
values. In Sec. 3, we prove that our proposed kernel method can provide near optimal
weights with respect to its AMISE. As a continuation of Dong and Zheng (2001), we
obtain, in addition, the optimal weights for r = 3, 5, 7 and show that the minimal AMISE
monotonically decreases as the value of r increases from 2 to 7 and that the frequency
polygons have similar efficiencies when r exceeds 5.

The simplest weight is the uniform weight. In Sec. 3, we further show that the use
of uniform weight leads to the minimum variance. It is shown in Dong and Zheng (2001)
that the GEFP based on uniform weight has minimum AMISE at r = 6. In this article,
we further show that the generalized frequency polygon for all values of r has minimum
AMISE when r = 5.

An alternative rule to bin the data is the linear binning rule. The frequency polygon
based on linearly prebinned data also inherently integrates to 1, as is the case of the
histogram based frequency polygon. In Sec. 4, we prove that our proposed kernel method
also provides near optimal weight when frequency polygon uses weighted sum of linearly
prebinned data. As in the case of histogram-based frequency polygon, we also prove that
the uniform weight also leads to the minimum variance of frequency polygon using linearly
prebinned data.

In Sec. 5, the generalized midpoint frequency polygon is found to be better at picking
up the bumps of densities than the generalized edge frequency polygon. We explained
the rationale in conjunction with a real data example and a simulated data example. A
simulation study is carried out to compare the efficiencies of the generalized midpoint and
edge frequency polygons in finite sample situations. The simulation results concur with the
findings in Sec. 3.

2. Generalized Midpoint and Edge Frequency Polygons

Let X1, X2, . . . , Xn be a random sample from a continuous distribution with density func-
tion f . For each frequency polygon in this article, divide the sample space into equal length
intervals (or bins) of length (or bin width) b. Let sk = k · b, k ∈ Z, denote the bin edges.
Then tk = sk + b/2 is the bin center of the bin Bk = (sk, sk+1] and nk = ∑n

i=1 IBk
(Xi)

denotes the bin count of Bk , where I is the indicator function, namely, IB(x) = 1, if x ∈ B

and 0, otherwise. Note that tk+1 − tk = b and
∑

k∈Z nk = n by assumption.
We now give the definition of frequency polygon as follows. Here and throughout this

article, let g be a non negative and symmetric weight function defined on D = {1, 2, . . . , r}
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such that
∑r

i=1 g(i) = 1. Given a weight function g, let wi = g(i), i = 1, 2, . . . , r , be
the weights used to obtain weighted sum of binned values. Define the weighted average
of r neighboring histogram (bin) heights for odd and even values of r as, respectively,
uk = (1/nb)

∑r
j=1 wjnk+j−(r+1)/2 and vk = (1/nb)

∑r
j=1 wjnk+j−(r+2)/2. The generalized

midpoint and edge frequency polygons are constructed by connecting the averaged ordinates
{tk, uk} and {sk, vk}, respectively, with straight lines. That is, they are defined as:

f̂MFP,r (x) = tk+1 − x

b
uk + x − tk

b
uk+1, x ∈ (tk, tk+1],

(1)
f̂EFP, r (x) = sk+1 − x

b
vk + x − sk

b
vk+1, x ∈ (sk, sk+1],

for odd and even values of r, respectively.
When r is even, f̂EFP,r is the GEFP considered by Dong and Zheng (2001). For the

case of r = 2, f̂EFP,2 uses w1 = w2 = 1/2 and is the EFP considered by Jones et al.
(1998). The latter authors point out that EFP f̂EFP,2 has a potentially better resolution of
peaks while the traditional midpoint frequency polygon f̂MFP,1 is much more hit-and-miss.
Simonoff and Udina (1997) demonstrated that the appearance of f̂EFP,2 is less sensitive
to the choice of anchor position (bin origin). On the other hand, when r is odd, f̂MFP,r

is the generalized version of midpoint frequency polygon. Scott (1985b, 2012) average
over q histograms of different anchors but a common bin width, say h, to obtain a new
histogram and made it continuous by linear interpolation. The resultant estimator, FP-ASH,
is equivalent to the midpoint frequency polygon f̂MFP,r , r = 2q − 1, using narrower bin
width b = h/q and the weights generated by the triangular weight function wj = g(i) =
1 − |j − q|/q, j = 1, 2, . . . , 2q − 1, in terms of our notations. FP-ASH and GEFP are
computationally and statistically efficient density estimators. In addition, they can alleviate
the noise effect of anchor; see Scott (1985b, 1992, 2010) for detailed discussions on FP-
ASH. See also Simonoff and Udina (1997) for their insight into the stability of EFP’s
appearance when anchor position is changed. From now on, we drop the subscripts MFP
and EFP from f̂MFP,r (x) and f̂EFP,r (x), respectively, and use f̂r henceforth to denote the
above two estimators if no confusion occurs in what follows.

Following the approaches of Scott (1985b), Jones et al. (1998), and Dong and Zheng
(2001), we will use the AMISE of f̂r , r ≥ 2, to understand the effect of the above gen-
eralization on frequency polygon. The result (formula 3.2) of Jones (1989) can serve this
purpose if uk and vk are rewritten in form of kernel estimates. To this end, we reformulate
uk and vk as follows. Let

Kr (x) =
r∑

j=1

r

2
wjI((2j−r−2)/r,(2j−r)/r](x). (2)

It can be shown that Kr is a symmetric probability density function supported on [−1, 1],
and that uk and vk can be rewritten in form of kernel estimates using bin width br/2 as

uk = 1

nbr/2

n∑
i=1

Kr

(
Xi − tk

br/2

)
,

vk = 1

nbr/2

n∑
i=1

Kr

(
Xi − sk

br/2

)
.
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The following proposition follows directly from formula (3.2) of Jones (1989).

Proposition 2.1. Suppose that the density f has continuous second derivative f ′′ with
R(f ′′) = ∫

f ′′(x)2dx < ∞ and that f is ultimately monotone. Let g be a non negative sym-
metric weight function defined on D. If n → ∞, b → 0 and n b → ∞, then the mean inte-
grated square error (MISE) of f̂r , MISE(f̂r ) = E[

∫ {f̂r (x) −f (x)}2dx], r ≥ 1, is given by:

MISE(f̂r ) = R(f ′′)b4

4

[
μ2

2 + μ2

3
+ 1

30

]
+ 1

nb

[
2

3
R(Kr ) + 1

3
R∗(Kr )

]
+ o

(
1

nb
+ b4

)
,

(3)

where μ2 = (r/2)2
∫

x2Kr (x)dx =∑r
i=1 g(i)[(i − (r + 1)/2)2 + 1/12], R(Kr ) = (r/2)−1×∫

Kr (x)2dx = ∑r
i=1 g(i)2 and R∗(Kr ) = (r/2)−1

∫
Kr (x)Kr (x − 2/r)dx = ∑r−1

i=1 g(i)
g(i + 1), for r ≥ 2 and R∗(Kr ) = 0, for r = 1.

The leading terms of MISE(f̂r ) are, respectively, the asymptotic integrated square bias
(AISB) and asymptotic integrated variance (AIV). Let their sum be denoted as AMISE(f̂r ).
Given a value of r, one seeks to obtain weights wi such that AMISE is minimized. We will
report the optimal weights wi for r = 3, 4, . . . , 7, that serve the above purpose. Toward
this end, we use the following AMISE-optimal bin width

b∗
r =

(
2
3R(Kr ) + 1

3R∗(Kr )

nR(f ′′)[μ2
2 + 1

3μ2 + 1
30 ]

)1/5

(4)

to obtain the minimum AMISE of f̂r given by

AMISE∗(f̂r ) = 5

4

(
R(f ′′)

n4

)1/5

C(r),

where C(r) = [μ2
2 + μ2/3 + 1/30]1/5[2R(Kr )/3 + R∗(Kr )/3]4/5, r ≥ 1. Given a value of

r, the optimal choice of wi is thus defined as the minimizer of C(r). For r = 3, 4, . . . , 7,
we obtain the optimal weights through exhaustive grid search and report them in Table 1.
In the next section, we will propose a simple kernel method to generate weights and prove
that the proposed method produces near optimal weights.

3. The Weights

3.1. Kernel-Based Weights

The kernel method is a widely used statistical practice due to its simplicity and interpretabil-
ity in generating weights; see Dong and Zheng (2001) for justifications of this approach. It
can be seen in Table 1 that the optimal weights for each r ≥ 3 are all positive and mound-
shaped. This leads us to approximate the optimal weights by the mixture of a kernel-based
weights and the uniform weight. The kernel based weights are generated by the normalized
degree-two Epanecknikov kernel function as follows:

gK (i) = K

(
2i − 1 − r

r

) / r∑
i=1

K

(
2i − 1 − r

r

)
, i ∈ D,
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Table 1
The optimal weights and C(r) values for f̂ ∗

r and f̂ M
r , r = 3, 4, . . . , 7

r i w∗
i C(r) of f̂ ∗

r i wi = gp∗ (i) Cp(r) of f̂ M
r p∗

1 0.31024169 1 0.31024169
3 2 0.37951661 0.36435138 2 0.37951661 0.36435138 0.67094

3 0.31024169 3 0.31024169
1 0.20898349 1 0.20898349
2 0.29101651 2 0.29101651

4 3 0.29101651 0.35863201 3 0.29101651 0.35863201 0.54882
4 0.20898349 4 0.20898349
1 0.15073325 1 0.15013011
2 0.22352424 2 0.22493494

5 3 0.25148502 0.35563429 3 0.24986989 0.35563811 0.47014
4 0.22352424 4 0.22493494
5 0.15073325 5 0.15013011
1 0.11375116 1 0.11301611
2 0.17608115 2 0.17739678

6 3 0.21016769 0.35386467 3 0.20958711 0.35386843 0.41252
4 0.21016769 4 0.20958711
5 0.17608115 5 0.17739678
6 0.11375116 6 0.11301611
1 0.08885989 1 0.08813266
2 0.14170879 2 0.14285714
3 0.17604945 3 0.17569183

7 4 0.18676374 0.35273001 4 0.18663673 0.35273330 0.36794
5 0.17604945 5 0.17569183
6 0.14170879 6 0.14285714
7 0.08885989 7 0.08813266

where K(u) = 0.75(1 −u2)I[−1,1](u). Let gU be the uniform weight, namely, gU (i) = 1/r ,
i ∈ D. Our proposed weights wi = gp(i) is defined as the mixture of gK and gU as follows:

gp(i) = (1 − p)gK (i) + p/r, i ∈ D, p ∈ [0, 1]. (5)

For any fixed value of r, now the value of C(r) depends on the choice of p if f̂r uses
wi = gp(i) = (1 − p)gK (i) + p/r , i ∈ D, We now use Cp(r) to denote the value of C(r)
when the weights of f̂r are generated by gp. Let p∗ denote the optimal choice of p
that minimizes Cp(r) and let gp∗ be its associated optimal mixture weight function, i.e.,
gp∗ (i) = (1 − p∗)gK (i) + p∗/r , i ∈ D. Let f̂ M

r denote the frequency polygon f̂r using the
weights wi = gp∗(i). Table 1 reports the values of wi = gp∗ (i) (column 6) along with the
values of p∗ (column 8) and their associated values of Cp(r) (column 7) for r = 3, 4, . . . , 7.

Table 1 also reports the AMISE-optimal weights w∗
i (column 3) among all choices of

weights. They are obtained through exhaustive grid search. Let f̂ ∗
r denote the f̂r using w∗

i .
Observe that wi = gp∗(i) and w∗

i have negligible differences and thus the values of Cp(r)
and C(r) of f̂ M

r and f̂ ∗
r (columns 7 and 4), respectively, have almost the same values. Those

values imply the relationship AMISE∗(f̂ M
r ) = ar ·AMISE∗(f̂ ∗

r ), where for r = 3, 4, . . . , 7,
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Figure 1. Values of C(r) of f̂ ∗
r (upper plus signs) and Cp(r) of f̂ M

r (upper solid curve), for r = 3,
4, 5, 6, and 7. The lower plus signs and dashed curve plot those of f̃ ∗

r and f̃ M
r , respectively.

ar = 1, 1, 1.00001, 1.00001, and 1.00001, respectively. Figure 1 confirms this result. The
upper solid curve shows the minimum Cp(r) values of r = 3, 4, . . . , 7, whereas the upper
five plus sings plot the minimum C(r) values of f̂ ∗

r . Hence, the optimal weights and optimal
performances of f̂ ∗

r are very well approximated by our proposed kernel method for the
above values of r. With brief descriptions, Table 2 helps to clarify some notations used
previously and some used in later sections.

Table 2
Summary of frequency polygons and their respective weights

Frequency polygon Weights used

simple (histogram) binning rule
f̂r general weights wi = g(i)
f̂ ∗

r optimal weights w∗
i

f̂ M
r optimal mixture weights wi = (1 − p∗)gK (i) + p∗/r

f̂ U
r uniform weights wi = gU (i) = 1/r

linear binning rule
f̃ general weights wi = g(i)
f̃ ∗

r optimal weights w∗
i

f̃ M
r optimal mixture weights wi = (1 − p∗)gK (i) + p∗/r

f̃ U
r uniform weights wi = gU (i) = 1/r
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3.2. The Minimum Variance Weights

Section 3.1 shows that our proposed simple kernel method can generate near optimal
weights. Here, we restrict our attention to the effect of using the mixture of any given
weight function g and the uniform weight gU through the AIV of f̂r . To this end, we need
the following the assumptions

(A1) g is a non negative and symmetric weight function defined on D = {1, 2, . . . , r} such
that

∑r
i=1 g(i) = 1. (A1) which is introduced in Sec. 2 and (A2).

(A2) g is non decreasing on {1, 2, . . . , [r/2] + 1}.

The following proposition suggests that, given an arbitrary weight function g, the AIV
of f̂r based on the mixture weight function mp = (1 − p)g + p/r , p ∈ [0, 1], decreases
monotonically as p increases.

Proposition 3.1. Given a non negative weight function g that satisfies (A1) and (A2),
define the mixture of g and gU as mp = (1 − p)g + p/r , p ∈ [0, 1]. Let Kr,mp

be defined
as (2) with wi = mp(i) and R and R∗ being defined as those in Proposition 2.1. Then
(nb)−1[(2/3)R(Kr,mp

) + (1/3)R∗(Kr,mp
)], the AIV of f̂r based on weight function mp, is

non increasing in p.

The proof of the above proposition is given in the Appendix. We now close this section
with the following two remarks.

Remark 3.1 (Minimum variance weights). Given a weight function g that satisfies the
assumptions (A1) and (A2), consider the mixture weight mp = (1 − p)g + p/r , p ∈
[0, 1]. Let m0 and m1 denote mp using p = 0 and p = 1, respectively (i.e., m0 = g,
m1 = gU ), and let f̂ U

r denote the frequency polygon f̂r based on gU . Proposition 3.1 implies
that, for mp with p ∈ [0, 1], 2R(Kr,m0 )/3 +R∗(Kr,m0 )/3 ≥ 2R(Kr,mp

)/3 +R∗(Kr,mp
)/3 ≥

2R(Kr,m1 )/3+R∗(Kr,m1 )/3. Therefore, for any fixed value of r, the AIV of f̂r based on mp

is smaller than (or equal to) those of f̂r using g. Moreover, when p = 1, f̂r has the smallest
AIV when g = gU , among the collection of all f̂r based on the weight functions that satisfy
the assumptions (A1) and (A2). Note that the assumption (A2) cannot be eliminated from
Proposition 3.1. As a counterexample, for r = 3, let g(1) = g(3) = 2/5, g(2) = 1/5. In this
case, gU (i) = 1/3, i = 1, 2, 3. When f̂r uses g, it follows that AIV(f̂ U

r ) = (8/27)/(nb) >

AIV(f̂r ) = (22/75)/(nb). Hence, the discrete uniform weight function does not lead to
minimum variance when assumption (A2) fails to hold.

Remark 3.2 (Minimum AMISE∗ of f̂ U
r ). The uniform weight wi = gU (i), i = 1, 2, . . . , r ,

is the simplest weight and the minimum variance weight as discussed in Remark 3.1. Dong
and Zheng (2001) showed that for even values of r, AMISE∗(f̂ U

r ) is minimized when
r = 6. Figure 2 uses the upper solid curve to plot the C(r) values of f̂ U

r for both odd and
even values of r, which confirms Dong and Zheng’s results, with C(6) = 0.361334. But
the upper plus sign shows that the AMISE∗(f̂ U

r ) is minimized at r = 5 among all values of
r, with C(5) = 0.361262.
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Figure 2. Values of C(r) of f̂ U
r (solid curve) and f̃ U

r (dashed curve). Plus signs denote their respective
minimum values.

4. Frequency Polygon Based on Linearly Prebinned Data

In this section, we study the frequency polygon based on linearly prebinned data. The
linearly prebinned data is defined by

�k =
n∑

j=1

(1 − b−1|Xj − tk|)+,

where the subscript “+” denotes the positive parts. This can be regarded as splitting the
unit mass of each data point between the two nearest bin centers tk and tk+1, in reverse
proportion to the distances to them. This rule has been proposed in Jones and Lotwick
(1983) and is well known to be superior to the simple histogram binning rule, at least in
the density estimation context. Let f̃r denote the frequency polygon based on the linear
prebinned data �′

ks. To simplify the use of notations, we shall borrow the same notations
used for f̂r previously to express their counterparts used for f̃r if no confusion occurs in
discussing the latter estimator.

4.1. The Weights for Linearly Prebinned Data

The weighted sum of the linearly prebinned data uk and vk used to construct f̃r by (1) is
given by:

uk = (1/nb)
r∑

j=1

wj�k+j−(r+1)/2 = 1

n b(r + 1)/2

n∑
i=1

Kr

(
Xi − tk

b(r + 1)/2

)
,
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vk = (1/nb)
r∑

j=1

wj�k+j−(r+2)/2 = 1

n b(r + 1)/2

n∑
i=1

Kr

(
Xi − sk

b(r + 1)/2

)
,

with the kernel function Kr is defined as

Kr (x) =
[
r + 1

2

]2 r+1∑
j=1

[
wj−1

(
2j

r + 1
− 1 − x

)
+ wj

(
−2(j − 1)

r + 1
+ 1 + x

)]
IEj

, (6)

where w0 ≡ wr+1 ≡ 0 and Ej = (−1+2(j −1)/(r +1),−1+2j/(r +1)]. It can be shown
that the current Kr is also a symmetric probability density supported on [−1, 1]. Therefore,
uk and vk can be expressed as the kernel density estimates using bin width b(r + 1)/2. The
midpoint and edge frequency polygons, denoted by f̃r henceforth, are defined by (1) with
uk and vk being replaced by the current ones, respectively. By such definition, f̃r is also a
linear interpolant of kernel estimates. In the case of r = 1, the f̃1 is the interpolated kernel
density estimates (Jones, 1989) and also the kernel polygons of Lin et al. (2006) using
triangular kernel function. As a direct result of Jones (1989), the following proposition is
an analogue of Proposition 2.1.

Proposition 4.1. Suppose that the density f and g satisfy the same conditions given in
Proposition 2.1, respectively. If n → ∞, b → 0 and n b → ∞, then the mean integrated
square error formula of f̃r , r ≥ 1, is the same as (3), but with μ2 = ∑r

i=1 g(i)[(i −
(r + 1)/2)2 + 1/6], R(Kr ) = (2/3)

∑r
i=1 g(i)2 + (1/3)

∑r−1
i=1 g(i)g(i + 1) and R∗(Kr ) =

(2/3)
∑r−1

i=1 g(i)g(i + 1) + (1/6)
∑r

i=1 g(i)2 + (1/6)
∑r−2

i=1 g(i)g(i + 2).

Note here that the AISB and AIV of f̃r are, respectively, given by 4−1R(f ′′)b4[μ2
2 +

μ2/3 + 1/30] and (n b)−1[(2/3)R(Kr ) + (1/3)R∗(Kr )]. We have the following minimum
AMISE of f̃r based on the optimal bin width

AMISE∗(f̃r ) = 5

4

(
R(f ′′)

n4

)1/5

C(r),

where, through a straightforward calculation,

C(r) =
{
μ2

2 + μ2

3
+ 1

30

}1/5 {
2

3
R(Kr ) + 1

3
R∗(Kr )

}4/5

.

We now end this subsection by the following remark.

Remark 4.1 (The performance of the proposed mixture weight function gp). Let Cp(r)
denote the value of C(r) when f̃r uses the weight function gp and let wi = gp∗(i) denote the
optimal mixture weight generated by (5) with the p = p∗ chosen from [0, 1] to minimize
the value of Cp(r). Let w∗

i be the weights that minimize C(r) among all choices of weights
and let f̃ ∗

r and f̃ M
r denote f̃r using w∗

i and wi = gp∗(i), respectively. The values of w∗
i and

wi = gp∗(i) (unreported but available upon request) obtained from exhaustive grid search
show that the optimal w∗

i are very well approximated by our proposed wi = gp∗(i), for
r = 3, 4, . . . , 7. We compare the values of C(r) and Cp(r) of f̃ ∗

r and f̃ M
r , respectively, by

the lower plots of Fig. 1. It is seen in Fig. 1 that the Cp(r) values of f̃ M
r (lower dashed

line) are almost the same as the C(r) values of f̃ ∗
r (lower plus signs) for r = 3, 4, . . . , 7.

Hence, the optimal weights and optimal performances of f̃ ∗
r are very well approximated
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by our proposed kernel method for the above values of r. Finally, as shown in Fig. 1, the
linear binning rule leads to smaller AMISE values than simple binning rule and such gains
diminish as the values of r increases.

4.2. The Minimum Variance Weight for Linearly Prebinned Data

In Sec. 3.2, we prove that the uniform weight leads to the minimum variance of f̂r . In this
subsection we will use the following proposition to show that the use of uniform weight
also minimizes the AIV of f̃r . Its proof is given in the Appendix.

Proposition 4.2. Given a non negative weight function g that satisfies (A1) and (A2),
define mp = (1 − p)g + p/r , p ∈ [0, 1], as the mixture of g and gU . Let Kr,mp

be defined
as (6) with wi = mp(i). Then (nb)−1[(2/3)R(Kr,mp

)+ (1/3)R∗(Kr,mp
)], the AIV of f̃r using

mp, is non increasing in p.

We now use the following two remarks to end this section.

Remark 4.2 (Minimum variance weight for f̃r ). By a similar argument as Remark 3.1,
Proposition 4.2 implies that given a weight function g that satisfies (A1) and (A2), the AIV
of f̃r based on mp is smaller than (or equal to) that of f̃r using g. Moreover, Proposition
4.2 implies that f̃r has the smallest AIV when g = gU , among the collection of all f̃r based
on the weight functions that satisfy assumptions (A1) and (A2).

Remark 4.3 (Minimum AMISE∗ of f̃ U
r ). The dashed curve in Fig. 2 plots the C(r) values

of the frequency polygon f̃r based on gU (denoted by f̃ U
r ). We conclude that AMISE∗(f̃ U

r )
is minimized when r = 4, since C(4) = 0.35190 (lower plus sign) is the smallest among
all values of C(r).

5. Numerical Comparison

5.1. A Real Data Example

We illustrate f̂ ∗
r , r = 1, 2, . . . , 7, on a dataset consisting of 63 annual snowfalls (in inches)

in Buffalo, New York, 1910–1972, given by Scott (1992) in which the data were applied to
the author’s proposed averaged shifted histogram. For a given bin width b, we follow Jones
et al. (1998) to take min{X1, X2, . . . , X63} − b/10 as our bin origin. Note here that the
bin widths used in f̂ ∗

r for different values of r have a relation determined by formula (4).
Therefore, the bin width, denoted by br , is given by br = 11.3 × hr , where the constants
hr = b∗

r /b
∗
1 = 1, 0.6986, 0.3661, 0.3216, 0.2893, 0.2644, 0.2445, respectively for r =

1, 2, . . . , 7. We now use Fig. 3 to plot the resultant f̂ ∗
r , r = 1, 2, . . . , 7. For comparison’s

sake, each panel of Fig. 3 displays the density estimates f̂ ∗
r and f̂ ∗

r+1, using the dashed and
solid curve to plot the generalized midpoint and edge frequency polygons, respectively.
For example, Fig. 3 a plots f̂ ∗

1 and f̂ ∗
2 by dashed and solid lines, respectively. It is seen

from the figure that a bump to the right of the mode was masked by the larger bump at
the mode of the EFP f̂ ∗

2 , while f̂ ∗
1 and f̂ ∗

3 is found to reveal such a bump. In general, the
generalized midpoint frequency polygon reveals the three bumps better than the generalized
edge frequency polygons when r is small. As the values of r increases the plots of f̂ ∗

r for
both larger odd and even values of r reveal the presence of all three bumps. In addition, it
tends to have smoother appearance while revealing three bumps as the value of r increases.
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Figure 3. Plots of f̂ ∗
r , r = 1, 2, . . . , 7, applied to the snowfall data. In each panel the dashed and

solid curves represent the generalized midpoint (r is odd) and edge frequency polygons (r is even),
respectively.

As discussed in Sec. 3, f̂ ∗
r tend to be equally efficient when r exceeds 5. The estimated

density plots in Figs. 3 d–f concur with this finding.

5.2. An Example with Simulated Data

In this subsection, we illustrate f̂ ∗
r , r = 1, 2, . . . , 7, on a simulated sample of size 100

generated from the standard normal distribution. For r = 1, 2, . . . , 7, the bin width br used
in f̂ ∗

r is given by br = 1.08 × hr , where the constants hr are the same as those given
in the previous subsection. We now use Fig. 4 to plot the resultant f̂ ∗

r , r = 1, 2, . . . , 7.
In each panel of the figure, we use thick solid, dashed, and thin solid curves to plot the
generalized midpoint frequency polygon, the generalized edge frequency polygon and the
target standard normal density, respectively. It is seen in the figure that, as the value of r
increases, f̂ ∗

r becomes smoother. This is because f̂ ∗
r join together more bin values to yield

density estimates. Finally, Fig. 4 also concur with the previous finding that when the value
of r exceeds 5, f̂ ∗

r tends to have similar accuracy.
In both the current and the previous examples, the generalized midpoint frequency

polygon is found to be better at picking up the bumps of two densities. We now give the
rationale as follows. When r is odd, the ([r/2] + 1)th bin is the unique midmost bin and
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Figure 4. Plots of f̂ ∗
r , r = 1, 2, . . . , 7, applied to a simulated sample of size 100 drawn from standard

normal distribution. In each panel the dashed and solid curves represent the generalized midpoint (r
is odd) and edge frequency polygons (r is even), respectively.

the data lying therein is assigned the largest weight. When r is even, however, the (r/2)th
and (r/2 + 1)th bins are the two midmost bins and they “share” the largest weights. As a
consequence of such weighing schemes, the generalized midpoint frequency polygon tend
to maintain the extremes while the generalized edge frequency polygon smoothes them
out. This explains why midpoint frequency polygon is better at revealing the bumps of the
densities, especially when the value of r is small.

5.3. Simulations

Here, a Monte Carlo simulation for some small and moderate values of r is carried out
to gain some insight into the generalized version of frequency polygon in finite sample
situations. The density functions considered for simulations are the following eight normal
mixture density functions: Standard Normal, Kurtotic unimodal, Outlier, Bimodal, Separate
bimodal, Skewed bimodal, Trimodal and Asymmetric claw (Marron and Wand, 1992;
Dong and Zheng, 2001). The definitions of the eight densities are given at the end of
this section. As pointed out in Jones et al. (1998), f̂ ∗

2 enjoys 10% improvement over the
ordinary midpoint frequency polygon f̂1 in terms of AMISE. Therefore, we will compare the
performance of f̂ ∗

r , r = 2, 3, . . . , 7. To run the simulations, we generate random samples
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X1, X2, . . . , Xn from each density for four different sample sizes n = 30, 50, 100, 200.
For each frequency polygon and a given bin width, we use the anchor placement rule
min{X1, X2, . . . , Xn} − b/10 to determine the placement of the bins. The accuracies of
the above three estimators are assessed by their sample MISE values. For this purpose,
we first generate 1,000 repetitions of random samples from each density for each sample
size. Then for each of f̂ ∗

r , r = 2, 3, . . . , 7, we numerically approximate each sample’s
respective integrated square error ISE(f̂ ∗

r ) = ∫
(f̂ ∗

r (x)−f (x))2dx by IŜE(f̂ ∗
r ) = (1/400)×∑401

i=1[f̂ ∗
r (ti) − f (ti)]2, where ti = −4 + (i − 1)(8/400), i = 1, 2, . . . , 401. The simulated

versions of these estimators’ MISE are thus approximated by the average of the 1,000
sample’s IŜE values. Given the value of r, the MISE value of f̂ ∗

r is determined by the value
of bin width b. For each set of 1,000 samples, we use 1,000 equally spaced grid values of
bin width to computed their associated MISE values and obtain the minimal value of the
simulated MISE. We denote the minimal MISE quantities of f̂ ∗

r by MISE∗(f̂ ∗
r ).

Table 3 reports the ratio MISE∗(f̂ ∗
r )/MISE∗(f̂2), r = 3, 4, . . . , 7, obtained from the

simulation results. The MISE ratios smaller than 1 indicate that the simulated minimal
MISE’s of f̂ ∗

r are smaller than that of EFP f̂2. Since the ratios for f̂ ∗
r in Table 3 is smaller

than 1 for all sample sizes and all values of r, the frequency polygons f̂ ∗
r , r = 3, 4, . . . , 7,

improve the accuracy of EFP for the above eight densities and the accuracy improves as r
increases. The above results show that the improvements of f̂ ∗

r , r = 3, 4, . . . , 7, discussed
in Sec. 3 in terms of their C(r) quantities carry over to the situations of small and moderate
sample sizes.

Remark 5.1 (The MISE ratios for f̂ M
r ). We have carried out an analogous Monte Carlo

simulation to compare the performance of f̂ M
r , r = 2, 3, . . . , 7. The resultant MISE ratios

MISE∗(f̂ M
r )/MISE∗(f̂2), r = 3, 4, . . . , 7, are very close to those of f̂ ∗

r reported in Table
3, due to the closeness of optimal weights of f̂ ∗

r and the optimal mixture weights of f̂ M
r .

Hence the result are not reported here to save the space of this article.

Remark 5.2 (The MISE ratios for f̃ ∗
r ). An analogous Monte Carlo simulation is also

carried out to compare the performance of f̃ ∗
r , r = 2, 3, . . . , 7. The resultant ratios

MISE∗(f̃ ∗
r )/MISE∗(f̃2), r = 3, 4, . . . , 7, are smaller than their respective counterpart

MISE∗(f̂ ∗
r )/MISE∗(f̂2), r = 3, 4, . . . , 7, and in general decreases as the value of r in-

creases. This implies that the improvements of f̃ ∗
r , r = 3, 4, . . . , 7, to f̃2, in terms of their

C(r) quantities in Fig. 1 (lower plus sings) carry over to the situations of small and moder-
ate sample sizes. As the simulation results parallel those reported in Table 3, they are not
reported here but available upon request.

Normal Mixtures Used in the Simulation:.

Standard normal: N (0, 1).
Kurtotic unimodal: (2/3)N (0, 1) + (1/3)N (0, 0.12).
Outlier: 0.1N (0, 1) + 0.9N (0, 0.12).
Bimodal: 0.5N (−1, (2/3)2) + 0.5N (1, (2/3)2).
Separated bimodal: 0.5N (−1.5, 0.52) + 0.5N (1.5, 0.52).
Skewed bimodal: 0.75N (0, 1) + 0.25N (1.5, (1/3)2).
Trimodal: 0.45N (−1.2, 0.62) + 0.45N (1.2, 0.62) + 0.1N (0, 0.252).
Asymmetric claw: 0.5N (0, 1) + ∑2

�=−2(21−�/31)N (� + 0.5, (2−�/10)2).
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Table 3
Values of MISE∗(f̂ ∗

r )/MISE∗(f̂2), r = 3, 4, 5, 6, 7

n = 30 n = 50 n = 100 n = 200

Gaussian
3 0.973 0.956 0.948 0.956
4 0.948 0.941 0.936 0.937
5 0.940 0.924 0.918 0.926
6 0.937 0.923 0.918 0.920
7 0.925 0.916 0.913 0.917

Kurtotic
3 0.982 0.977 0.970 0.964
4 0.974 0.966 0.958 0.954
5 0.968 0.959 0.952 0.947
6 0.965 0.956 0.949 0.944
7 0.962 0.954 0.946 0.942

Outlier
3 0.965 0.955 0.962 0.962
4 0.944 0.935 0.948 0.945
5 0.933 0.929 0.937 0.937
6 0.931 0.920 0.930 0.931
7 0.928 0.921 0.930 0.928

Bimodal
3 0.966 0.973 0.963 0.965
4 0.997 0.956 0.941 0.948
5 0.959 0.951 0.931 0.940
6 0.959 0.945 0.932 0.936
7 0.958 0.943 0.923 0.932

Separate bimodal
3 0.952 0.962 0.972 0.961
4 0.949 0.950 0.953 0.946
5 0.939 0.940 0.940 0.938
6 0.934 0.932 0.937 0.932
7 0.932 0.932 0.934 0.930

Skewed Bimodal
3 0.980 0.975 0.973 0.969
4 0.968 0.964 0.953 0.957
5 0.959 0.958 0.946 0.949
6 0.959 0.950 0.942 0.945
7 0.956 0.949 0.940 0.942

Trimodal
3 0.981 0.971 0.972 0.976
4 0.971 0.966 0.959 0.963
5 0.968 0.962 0.954 0.955
6 0.968 0.961 0.947 0.952
7 0.965 0.956 0.945 0.949

Asymmetric claw
3 0.987 0.991 0.989 0.989
4 0.984 0.982 0.983 0.979
5 0.974 0.976 0.977 0.975
6 0.971 0.974 0.974 0.972
7 0.968 0.972 0.972 0.971
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Appendix

Proof of Proposition 3.1. We now provide the proof of Proposition 3.1 only for even value
of r. The proof for the case of odd value of r is similar and therefore is omitted. There
is nothing to prove for r = 2, since in this case g(1) = g(2) = 1/2 is the only choice of
weight. Therefore the proof given below will be done for r ≥ 4.

Given an arbitrary weight function g satisfying assumptions (A1) and (A2), let Vg =
2R(Kr )/3 + R∗(Kr )/3. It suffices to show that (d/dp)V(1−p)g+p/r ≤ 0. By Proposition 3.1
and the symmetry of g, one has R(Kr ) = ∑r

i=1(g(i))2 and

R∗(Kr ) =
r−1∑
i=1

g(i)g(i + 1)

=
[

r−1∑
i=1

(g(i))2 +
r−1∑
i=1

(g(i + 1))2 −
r−1∑
i=1

(g(i + 1) − g(i))2

]
/2

=
r∑

i=1

(g(i))2 − (g(r))2 −
r/2−1∑
i=1

(g(i + 1) − g(i))2.
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Consequently,

Vg = 2R(Kr )/3 + R∗(Kr )/3 =
r∑

i=1

(g(i))2 −
r/2−1∑
i=1

(g(i + 1) − g(i))2/3 − (g(r))2/3.

By the definitions of mp, R(Kr,mp
), R∗(Kr,mp

), and by replacing g with mp = (1−p)g+p/r ,
the last formula implies

V(1−p)g+p/r = 2R(Kr,mp
)/3 + R∗(Kr,mp

)/3

=
r∑

i=1

((1 − p)g(i) + p/r)2

−
r/2−1∑
i=1

[(1 − p)g(i + 1) + p/r − ((1 − p)g(i) + p/r)]2/3

− ((1 − p)g(r) + p/r)2/3

= 1/r + (1 − p)2
r∑

i=1

(g(i) − 1/r)2

− (1 − p)2
r/2−1∑
i=1

(g(i) − g(i + 1))2/3

− ((1 − p)g(r) + p/r)2/3.

Differentiating both sides with respect to p yields

(d/dp)V(1−p)g+p/r = −2(1 − p)

[
r∑

i=1

(g(i) − 1/r)2 −
r/2−1∑
i=1

(g(i) − g(i + 1))2/3

]

+ 2((1 − p)g(r) + p/r)(g(r) − 1/r)/3. (7)

The last term on the right-hand side of (7) is non positive, since g(r) ≤ 1/r by assumptions
(A1) and (A2). We now prove that the first term of (7) is also non-positive for r ≥ 4. Let
jr = min1≤i≤r/2−1{i : g(i) ≤ 1/r ≤ g(i+1)}. It follows from (A2) that, for 1 ≤ i ≤ jr −1,
(g(i) − 1/r)2 ≥ (g(i) − g(i + 1))2, whereas for jr + 1 ≤ i ≤ r/2 − 1, (g(i + 1) − 1/r)2 ≥
(g(i + 1) − g(i))2. Consequently, the following inequality holds for the first term of (7)

−2(1 − p)

[
r∑

i=1

(g(i) − 1/r)2 −
r/2−1∑
i=1

(g(i) − g(i + 1))2/3

]

≤ −2(1 − p)

[
2

r/2−1∑
i=1

(g(i) − 1/r)2 −
r/2−1∑
i=1

(g(i) − g(i + 1))2/3

]

≤ −2(1 − p){
jr−1∑
i=1

[(g(i) − 1/r)2 − (g(i) − g(i + 1))2/3]
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+
r/2−1∑
i=jr+1

[(g(i + 1) − 1/r)2 − (g(i) − g(i + 1))2/3]

+ (g(jr ) − 1/r)2 + (g(jr + 1) − 1/r)2 − (g(jr ) − g(jr + 1))2/3}
≤ 0.

Hence, the proof of Proposition 3.1 is complete by noting that the sum of the last three
terms in the above braces is positive, since (b − x)2 + (a − x)2 − (a − b)2/3 ≥ 0, whenever
0 < a ≤ x ≤ b. �

Proof of Proposition 4.2. We now give the proof of Proposition 4.2 only for the case of
even values of r ≥ 4. The proof for the case of odd value of r is similar and thus is omitted.
For a given weight function g satisfying assumptions (A1) and (A2), let R(Kr ) and R∗(Kr )
be those defined in Proposition 4.1 and let Vg = 2R(Kr )/3 + R∗(Kr )/3. Firstly, observe
that

r−1∑
i=1

g(i)g(i + 1) = (1/2)

[
r−1∑
i=1

g(i)2 +
r−1∑
i=1

g(i + 1)2 +
r−1∑
i=1

(g(i + 1) − g(i))2

]

=
r∑

i=1

g(i)2 −
r/2−1∑
i=1

(g(i + 1) − g(i))2 − g(1)2

and that, by the symmetry of g,

r−2∑
i=1

g(i)g(i + 2) = (1/2)

[
r−2∑
i=1

g(i)2 +
r−2∑
i=1

g(i + 2)2 +
r−2∑
i=1

(g(i + 2) − g(i))2

]

=
r∑

i=1

g(i)2 −
r/2−1∑
i=1

(g(i + 2) − g(i))2 − g(1)2 − g(2)2.

By the definition of R(Kr ), R∗(Kr ) and the above two formulae, Vg can be rewritten as

Vg = 2R(Kr )/3 + R∗(Kr )/3

= 4/9
r−1∑
i=1

g(i)g(i + 1) + 1/2
r∑

i=1

g(i)2 + 1/18
r−2∑
i=1

g(i)g(i + 2)

=
r∑

i=1

g(i)2 − (4/9)
r/2−1∑
i=1

(g(i + 1) − g(i))2 − (1/2)g(1)2 − (1/18)g(2)2

− (1/18)
r/2−1∑
i=1

(g(i + 2) − g(i))2. (8)

Then (8) and the following formula

r∑
i=1

((1 − p)g(i) + p/r)2 = (1 − p)2
r∑

i=1

(g(i) − 1/r)2 + 1/r
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imply that for the weight function mp = (1 − p)g + p/r , p ∈ [0, 1], Vmp
= V(1−p)g+p/r

can be expressed by

V(1−p)g+p/r = 2R(Kr,mp
)/3 + R∗(Kr,mp

)/3

= (1−p)2
r∑

i=1

(g(i)−1/r)2 + 1/r−(4/9)(1 − p)2
r/2−1∑
i=1

(g(i + 1) − g(i))2

− (1/18)(1 − p)2
r/2−1∑
i=1

(g(i + 2) − g(i))2

− (1/2)(1 − p)2(g(1) − 1/r)2 − (1/18)(1 − p)2(g(2) − 1/r)2

− (1 − p)(g(1) − 1/r)/r − (1/9)(1 − p)(g(2) − 1/r)/r − (5/9)r2.

Differentiating both sides of the above equation with respect to p yields

(d/dp)V(1−p)g+p/r =
[

− 2(1 − p)
r∑

i=1

(g(i) − 1/r)2

+ (8/9)(1 − p)
r/2−1∑
i=1

(g(i + 1) − g(i))2

+ (1/9)(1 − p)
r/2−1∑
i=1

(g(i + 2) − g(i))2

+ (1 − p)(g(1) − 1/r)2 + (1/9)(1 − p)(g(2) − 1/r)2

]
+ (g(1) − 1/r)/r + (1/9)(g(2) − 1/r)/r. (9)

To prove Proposition 4.2, it suffices to show that (d/dp)V(1−p)g+p/r ≤ 0, for r ≥ 4. Firstly,
note that the sum of the last two terms of (9) is non positive. To see this,

1 =
r∑

i=1

g(i) = 2g(1) +
r−1∑
i=2

g(i) ≥ 2g(1) + (r − 2)g(2)

⇒ g(2) − 1

r
≤ 1 − 2g(1)

r − 2
− 1

r
= 2

r − 2

(1

r
− g(1)

)
,

Consequently, it holds that

[g(1) − 1/r] + 1

9
[g(2) − 1/r] ≤ [g(1) − 1/r][1 − (2/9)(r − 2)−1] ≤ 0. (10)

Next, to complete the proof of Proposition 4.2, we now prove that the sum of the remaining
terms in the brackets of (9) is also non-positive. Let jr = min1≤i≤r/2−1{i : g(i) ≤ 1/r ≤
g(i+1)}. As asserted earlier, for 1 ≤ i ≤ jr −1, (g(i)−1/r)2 ≥ (g(i)−g(i+1))2, whereas
for jr +1 ≤ i ≤ r/2−1, (g(i+1)−1/r)2 ≥ (g(i+1)−g(i))2. The following three formulae
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(11)–(13) are needed in completing the proof of Proposition 4.2:

(i)
r∑

i=1

(g(i) − 1/r)2 = 2
r/2∑
i=1

(g(i) − 1/r)2, (11)

(ii)
r/2−1∑
i=1

[g(i + 1) − g(i)]2

≤
r/2∑
i=1

[g(i) − 1/r]2 + 2[g(jr + 1) − 1/r][1/r − g(jr )]

≤
r/2∑
i=1

[g(i) − 1/r]2 + [g(jr + 1) − 1/r]2 + [g(jr ) − 1/r]2, (12)

and

(iii)
r/2−1∑
i=1

[g(i + 2) − g(i)]2

≤
r/2+1∑
i=1

[g(i) − 1/r]2 + 2[g(jr + 2) − 1/r][1/r − g(jr )]

+ 2[g(jr + 1) − 1/r][1/r − g(jr − 1)]I{jr �=1}

≤
r/2+1∑
i=1

[g(i) − 1/r]2 + [g(jr + 2) − 1/r]2 + [g(jr ) − 1/r]2

+ {[g(jr + 1) − 1/r]2 + [g(jr − 1) − 1/r]2}I{jr �=1}. (13)

Combining (12), (13), and that g(r/2) = g(r/2 − 1) due to symmetry, we have

(8/9)(1 − p)
r/2−1∑
i=1

[g(i + 1) − g(i)]2 + (1/9)(1 − p)
r/2−1∑
i=1

[g(i + 2) − g(i)]2

≤ (1 − p)

{
r/2∑
i=1

(g(i) − 1/r)2 + (1/9)[g(r/2) − 1/r]2

+ [g(jr ) − 1/r]2 + [8/9 + (1/9)I{jr �=1}][g(jr + 1) − 1/r]2

+ (1/9)[g(jr + 2) − 1/r]2 + (1/9)[g(jr − 1) − 1/r]2I{jr �=1}

}
. (14)

By using (9), (10), (11), and (14), we have

(d/dp)V(1−p)g+p/r ≤ −(1 − p)
{
3

[
r/2−1∑
i=1

(g(i) − 1/r)2] + (26/9)(g(r/2) − 1/r)2

− [g(jr ) − 1/r]2 − [8/9 + (1/9)I{jr �=1}][g(jr + 1) − 1/r]2
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− (1/9)[g(jr + 2) − 1/r]2 − (1/9)[g(jr − 1) − 1/r]2I{jr �=1}

− (g(1) − 1/r)2 − (1/9)(g(2) − 1/r)2
}

+ [g(1) − 1/r][1 − (2/9)(r − 2)−1]

≤ 0,

Hence, the proof of Proposition 4.2 is complete by noting that in the above braces the first
term contains all terms that appear later with minus sign. �


